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We consider the problem of the existence and the stability in-the-small of 
periodic solutions of systems of ordinary differential equations with a small 
parameter P, which in the generating approximation (P= 0) admit of a family 
of quasi-periodic solutions (we are concerned only with the solutions belonging 
to the indicated family when P = 0 ). The case to be investigated is in a spe- 

cific sense a more general case of the unisolated generating solution in the 

small parameter theory and, therefore, includes everything previously treated 
by Malkin [l], Blekhman [2], and others. The main difficulty in the investiga- 
tion is the presence of a multiple zero root in the characteristic determinant 

of the problem’s generating system, to which both simple as well as quadratic 
elementary divisors [3] correspond. This fact predestines the presence of three 
groups of stability criteria for the solution being examined. The method for 
constructing these criteria, proposed here, assumes, in contrast to a previous one 

Cl], the preliminary determination of not only the generating approximation 
but also the first one to the desired periodic solution. Particular aspects of the 

general “mixed” problem treated here were studied earlier in [4, 53. 

1. Bxfrtence of a periodic solution. At present relatively general integra- 
bility tests and integration methods for systems of high-order nonlinear differential equa- 
tions have been worked out only for autonomous canonical systems [6]. The successive 
use of these methods leads, in the case of a sign-definite Hamiltonian function, to the 
determination of a general quasi-periodic integral. The conjugate canonic variables 
of the problem are here expressed as %a-periodic functions of the quantities 

?p8 = v,t + a, (1.1) 

and also of the mutually independent integration constants h, (a = 1, Z,...). Naturally, 

the total number of quantities qs, h, equals the order of the original system. If the 
quantities a, are integration constants, also independent of each other and of h, (and 
we assume this is so in what follows), then the quantities & acquire the nature of par- 

tial rapidly-rotating phases and, moreover, the partial frequencies v, depend, as does 
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the energy constant, only on the h, in the general case. Sometimes the constants h, 
take on the meaning of partial actions. In that case we usually speak of the pair h,, 

$s as the canonic pair “action - angle”. 
A more common case can occur when the system under investigation can be separated 

into two subsystems by some means or other, One of them being canonical and integra- 
ble, the other, either linear and stationary relative to the proper variables or admitting 
of the construction of a particular periodic solution by Liapunov’s method [l] or by some 

other local method. Here, naturally, the family of quasi-periodic solutions ofthe original 

system can be constructed by purely analytic means. Thus, the periodic solution, con- 

structed by known analytic methods, of a high-order system is in practice always a part 

of some family of quasi-periodic solutions. 
Keeping what has been said in mind, in the general case we assume that the system 

where 5 is a k x 1 vector, the vector-valued function X is analytic in ,z and p and 

2n-periodic in the dimensionless argument 9 = vt (v > O), admits of a family of 
quasi-periodic solution for p = 0 

5 (t, 0) = 9 ($> Ipr, .**, fClr, h,, “‘3 h2,) (1.3) 

Here the rapidly rotating phases $ (s = 1 I ,‘. , I) and the constants h, (s = 1, . . ., 
n) have the previous meaning. Furthermore, 1 + n < k. For the sake of generality 
we assume that the first mpartial frequencies of family (1.3) essentially depend on the 

constants h,, . . . , h, , while the I - m succeeding ones identically equal v, i.e. 

vs = v, (h,, ..‘, h,) fS=l,...fm) 0.4) 
vs Ez v +=m+i, . ..? 1) 

We note also that the Fourier expansion of the vector-valued function cp may, in general, 
not contain several (but not very many) first harmonics of the phases $, &, . . . . 4~. 

The membership of (1.3) in the subfamily of solutions T-periodic in t (T=Zx / v) 
is characterized by the fulfillment of the relations 

vs (hl, . . . . h,) = v (s = 1, . . ., m) (1.5) 

and, therefore, depends only on 1 + n - m independent constants among which are 

the phase shifts ui, . . . . ~1~. Therefore, the variational system 

y’ 2L2 
dX 
-zy (1.6) 

which for p = 0 (y = ya) is not far ffom the above-mentioned periodic motions, 
admits, in accordance to a theorem of Poincard Cl], of 2 mutually independent T-peri- 

odic solutions 89 / acl, (i = 1, . . . , E) and of n linearly increasing 

(1.7) 

The prime here denotes “total” partial diffe~ntiation. 

The family (I. 7) of n mutually independent solutions of the linear system (1.6) can 
be replaced when p = 0 by a family of m linearly increasing and n - m periodic 
solutions. Indeed, under condition (1.5) we assume that the determinant 
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f3Vi I I ah, i, SZl,..., m 

is nonzero. Then, the numbers &. are compIetely uniquely determined from the rela- 

tions 
5 

L ah, 
avi = &, (i,r=l,..., m) (1.8) 

S=l 

The quantities 
m 

(1.9) 

are linear combinations of the first m solutions in (1.7) and, therefore, also satisfy sys- 
tem (1.6) with p = 0. On the other hand, if we substitute (1.7) into (1.9), then as a 

consequence of (1.8) we have, after replacing the index r by i , 

6i = gt+$ 
i 

(f = 1,. . ., m) 

Here the periodic component (~1 is determined from the formula 

and, as a consequence of (1.6) and (1. lo), satisfies the equation 

8X ( ) acp 
Qi’ = az ‘i - ~ (i = 1,. . ., m) 

* 

(1.10) 

(1.11) 

(1.12) 

In Eqs. (1.12) and below the parantheses denote that the corresponding quantity is com- 
puted for 2 = q and p = 0. 

We introduce the quantities 

6 6=g?- 5 Xi).~~ (s=mt_l,...,n) 8 i, r=1 
(1.13) 

which obviously also satisfy system (1.6) with p = 0. Since by.virtue of (1.8) the 
linearly increasing terms vanish after the substitution of (1.7) into (1.13). the quantities 

6, (s = m + 1, . . . . n) are periodic in t and can be represented as 

6 s=g- i Xirzg (S=m+l,. ..( n) 
6 i, r=i 

(1.14) 

Together with (1.14) the following expressions, ensuing from (1.11). are also valid : 

6, = a& - i ?& (s=m+l,..., 72) 
6 i=l ’ 

(1.15) 

Thus, the system of variational equations of the generating system of the problem (/I = 
0) admits of 1 + )^L - m mutually independent T-periodic solutions acp’i dai (i = 
1 , .“, L’> and 6, (s = m + I, . . . . n). We assume that this system admits of no other 
independent T-periodic solutions. Then the conjugate system 

2’ = -2 (ax/&) (1.16) 

also admits of 1 + n - m mutually independent T-periodic particular soIutions 

which we subsequently denote by zi, . . . , ZltT,.+,- 



944 R.F.Nagaev 

In connection with the problem being considered, it has been shown in local small 
parametr theory [l] that for the analyticity in I.L and the T-periodicity in t of the 
solution Ic (t, a,, . . . . al, hi, . . . . h,, IL) of system (1.2), which becomes (1.3) when 
lo = 0 , it is s u ffi . clent that the transcendental system consisting of the m equations in 
(1.5) and, in addition, of the 1 f n - m equations 

T 

I’, (a,, . . .) a,, hl, . . .) h,,) zs ” 2, ag :cit = 0 (s = 1, . .( 1+ n - m) I ( 1 (1.17) 

0 

admit of simple solutions. These solutions, of course, uniquely determine the T-periodic 

generating approximation in the expansion 

On the other hand, the presence of such a solution guarantees the T-periodicity of the 

sequence of corrections Xi, x2, . . . . We note that the first approximation x1 = (8~: / 

8~) to the solution x (t, a,, . . . . al, h,, . . . . h,, CL), not necessarily periodic, can 
be found from the system 

x1’= (EJXii- (%I 

2. Stability criteria of the firtt group. The analysis in Sect.1 shows 
that the variational equations of the generating system admit of m groups of solutions 8~ /do i, 

fji (i = 1, . ..) m), to which correspond zero characteristic indices with quadratic ele- 
mentary divisors [l, 31. The roots of the characteristic determinant of system (1.6). 

corresponding to these solutions, are analytic in p’/’ [ 71. On the other hand, to the 

simple periodic solutions @I / f30i (i = m + 1, . . . , 1), 6, (s = m + 1, . . . , n) 
there correspond zero characteristic indices with simple elementary divisors. The char- 
acteristic indices of system (1.6). reducing to them as I_L + 0, are analytic in p. 

We turn to the direct determination of the “critical” solutions of system (1.6). Intro- 

ducing the substitution [1] 
Y = r exp A (P) t (2.1) 

we seek the T-periodic solutions of the system 

q-+-h’l (2.2) 

We represent the T-periodic particular solutions, analytic in p, of (2.2) in the form 

Tj = q0 + pq1t pz *.-7 h = ?Qp + p2... (2.3) 

Obviously, the generating periodic approximation q o, can be represented as a superposi- 

tion of periodic solutions of the variational equations of the generating system. i. e, 

rlo = ~ ~ ai -~ ~ 6,b, (2.4) 
i=i z S=?Il+l 

where a,, . . . , al, bmTl, . . . , b, are constants. Differentiating (2.2) with respect to 

IA and then setting p = 0, we obtain and equation for determining q1 

where E, is the h- X /C unit matrix. Since by virtue of (1.2) 
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with due regard to (1.13) system (2.5) can be reduced to the form 

Here we have introduced the notation 

(2.6) 

(2.7) 

(2.8) 

We now carry out a partial orthogonalization and normalization of the periodic solu- 
tions of system (1.16) in accordance with the equalities 

(2.9) acp 
zT i3ai 

- &, (i = ),L + 1, ,) 1). z,.6, = L1+,, P (s == )‘L + 1, ” n, 
Furthermore, since the quantities 6 i (i = 1, . . . , m) , defined by (1. lo), satisfy the 

relations s,.l’fi s coust and, consequently, 

z arp=O 
r dri - 

(i = 1 , . . . . ?U) 

after some manipulations with due regard to (1.16) and (2.7). we obtain 

We integrate these relations with respect to t in the limits from zero to 7’. Then, since 

ax1 T (k T 
Z- 1 7 ari o 

= & (ZA joT, z’ahs ” = -$ (2+x1) oT, z ,X1 IOT f P,. (2.12) 

it turns out that the fulfillment of the following linear equations: 

(rzl,..., m) 

(r = nz + 1, . ., 1) (2.13) 
(r=1+1,...,1+rL-.m) 

is necessary and sufficient for the ?‘-periodicity of the quantity 11, . Equating the deter- 

minant of this system to zero, we arrive at an equation of degree 1 + n - 2m for de- 

termining the first approximations to the “simple” critical characteristic indices of the 
problem. The 1 + n - 2m stability criteria following from this we call stability cri- 
teria of the first group. 

3. Additional stability criteria. In contrast to (2.3) the “nonsimple” 
critical solutions of system (2.2) are represented as 
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r = 70 + P”‘%l + pq2 + $2 . . . . h = A*p” + a,p + $’ (3.1) 

Here, as before, the periodic generating approximation can be written in form (2.4). 
However, by virtue of the fact that the components of the matrix 8X / 8,~ are analytic 

in IL, the system of equations for determining the first approximation q1 has the form 

(3.2) 

The general T-periodic solution of this system exists only if n,+l m-1 . . . = or = 

h m+t = . ..= b, = 0 and, by virtue of (1.12), can be written in the form 

171 

Q = A1 2 s’;ai + i a?!- c; + i 1Y,,d, (3.3) 
iz-1 i=r a’1 S=ln+l 

where cl, . . . . cl, d,,,+l, . . . . d, are the new constants of integration. Thus, qt de- 
pends now on I+ n constants. The periodic second approximation 1s is determined 

from the system 

We now assume the fulfillment of the relations 

z,Gi - 6,, (i .-- 1, ., nt) (3.5) 

which together with (2.9) completely determine the choice of the orthogonal and nor- 
malized solutions zt, . . . , z/+,,-~~ of system (1.16). Then, proceeding as before, with 
due regard to (2.6) and (3.4). we obtain 

Integrating these relations with respect to t in the limits from 0 to T , with due re- 

gard to (2.11). we get that for the periodicity of ~a it is necessary and sufficient to ful- 
fill the following l f n - m homogeneous linear equations in the unknowns a,, . . . , 

amy c,tl, . . . . cl, d,,,+l, . . . . A: 

gf&i = (i$ Ejly,;;;>;; ,~_ ,,~) (3.7) 
1 T-1tm 

We note that as a consequence of (1.12) the values of the constants cr, . . . . c,and 

A, prove to have no influence on the T-periodicity of TIN The expression for t~s ob- 
tained as a result of integrating (3.4) can be written in the following general form : 

m 

rl2 = 5 + zl Gi (hlci + h2ai) + f: i: ei + jj IS,f, (3.8) 
i=l s=m+1 

Here e,, . . . . el, fmtl, . . . . f, are constants and the component 5 is a particular solu- 
tion of (3.4). which by virtue of (3.7) is T-periodic in t and satisfies relations (3.6). 
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After an appropriate integration of these relations we obtain 

m 

.zrc = 2 z, 2 ai - I 
k12a,t (r = 1, . ., m) 

?m,t (r==m+l, . . . . 1) (3.9) 
i=l 

1 
w-l+m (r = I + 1, . ., 1 -i_ n - nr) 

The system of equations for determining the periodic third approximation 11 3 is 

The conditions for the T -periodicity of q 3 are determined by the usual methods. Here, 

however, besides relations(l.14) (1.16). (2.6). (d.8)-(2.10) and (3.5) we should alsokeep 
(1.11) and (3.9) in mind, By virtue of these latter relations we have, with due regard 

to (3.7). 

T 

Pri = s ( z, t$ - z,; dt 
L 2 

0 
Finally we arrive at the following system of l f n - m linear inhomogeneous equa- 
tions for determining the unknowns cl, . . . . c,, &,+I. . . . , e,, fm+l, . . . . In: 

(3.12) $Jagci+ f$ 
1 

%rl,+hl $J Xsizai= 
i=l s=m+P s i,s=1 

hl 5 priai + T x 
2h&a, -f h~~c, (r = 1,. . ., m) 

y; -t kler (r = m + 1, . . ., 1) 

i=l 2 r-l+m + hlf,-l+m (r=I+l,..., l-~f~-r~l) 

The construction carried out permits us to determine the first two approximations h, 
and A2 to the nonsimple critical indices of the mode. Naturally, from system (3.7), the 

subsystem of the first m equations in the unknowns a,, . . . , a, arises. The condition 
that the latter’s determinant equals zero yields the equation 

--r - 6i,h12T dCii 
=0 

i, r=l, . . . . m 
(3.13) 

allows us to find the m values of the quantity h, 2. In the case of stability all these 
values should be real and negative. We say that the corresponding m inequalities 
(Xl2 < 0) constitute stability criteria of the second group for the periodic mode. 

The fulfillment of the stability criteria of the second group ensures only that the first 

approximations to the nonsimple characteristic indices are imaginary (Re h, = 0). 
Therefore, a complete judgment on the signs of the real parts of these indices is obtained 
from the expressions for the second approximations A,. The appropriate expressions are 
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easily obtained from the first m equations in (3.12), which form the following linear 
inhomogeneous system for determining the constants ci, . . . , c,, 

A~‘Tc, = hl {2h,Ta7 - 5 [ 5 X,iag + (3.14) 
i=l s=l 

1 

1 
X7?- 

In the derivation of system (3.14) the magnitudes of the constants c,,+, , . . . , cl, dm+l, . , . 
d, were eliminated by means of (3.7). The determinant of the homogeneous part of 

system (3.14) coincides with (3.13) and, consequently, vanishes. Therefore, to be able 
to solve this system we should impose specific constraints on its right-hand sides. The 

corresponding relations, in a form solved with respect to A, are 
nz m I 

s==m+1 

Here the numbers a,*, . . . , a, * form the solution of the system 

il % a,* = klzTai* (i = 1,. ., m) (3.16) 

conjugate to the first group of Eqs. (3.7). 

If all m roots hi2 of Eq. (3.13) are nonzero and have simple elementary divisors 

(we shall assume this), then to each such root there corresponds its own set of numbers 

a,, es.9 am1 0, * I -*., urn* and its own magnitude of k2 computed by formula (3.15). 
Thus, the nonsimple characteristic indices of the mode separate in a natural fashion 

into m pairs of the form 

If the stability criteria of the second group are fulfilled, then all the numbers A2 are 
real, and for a definitive judgment on stability we should verify the fulfillment of the 
Jn inequalities ha CT) < 0. We call this group of inequalities the stability criteria of 

the third groqp. 
In conclusion we note that the relations obtained in this paper permit us to predeter- 

mine the existence and the stability of the mode in the autonomous case as well. To do 
this, however, the generating system should be chosen so that the frequency of its peri- 
odic solution equals unknown frequency Y of the desired mode. Furthermore, the quan- 
tity Y in Eqs. (1.5). (1.17) should be replaced by the first approximation v,, to it. Then 

in the autonomous case the quantities vo, a, - a,, . . . . ccl --al, hi, . . . . h, are uni- 
quely determined from these equations. It is also essential here that the determinant 

of system (2.13) have a zero root, and the total number of stability criteria of the first 
group is lessened by unity. We can convince ourselves of the latter by summing the 
first I columns of the determinant of system (2.13) with due regard to the fact that 

dP,likc, + . . . + i?P,ldu, - 0 



Case of a generating family of quasi-periodic solutions 
in the theory of small parameter 

949 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

REFERENCES 

Malkin, I. G., Certain Problems in the Theory of Nonlinear Oscillations. MOS- 
cow, Gostekhizdat, 1956. 

Blekhman, I. I., On the stability of the periodic solutions of quasi-linear non- 
autonomous systems with many degrees of freedom. Dokl. Akad. Nauk SSSR, 

Vol.104, No6, 1955. 
Chetaev, N. G., The Stability of Motion. (English translation), Pergamon Press, 

Book NoO9505, 1961. 
Akulenko, L. D., On the oscillatory and rotational resonant motions. PMM 

Vol.32, Np2, 1968. 
Nagaev, R. F., Synchronization in a system of essentially nonlinear objects 

with a single degree of freedom. PMM Vol. 29, Nn2, 1965. 

Lur’e, A. I., Analytical Mechanics. Moscow, Fizmatgiz, 1961. 
Kushul’, M. Ia., On the quasi-harmonic systems close to systems with constant 

coefficients, in which the pure imaginary roots of the fundamental equation 

have nonsimple elementary divisors. PMM Vol. 22, Np4, 1958. 

Translated by N. H. C. 

FORCED OSCILLATIONS WITH A SLIDING REGIME RANGE OF A TWO-MASS 

SYSTEM INTERACTING WITH A FIXED STOP 

PMM Vol. 3’7, Np6, 1973, pp. 999-1006 

Iu. S. FEDOSENKO 
(Gor’kii) 

(Received February 15, 19’73) 

UDC 534 

We investigate, by the method developed in [l], the forced oscillations with 
a sliding regime range of a two-mass system with elastic connection between 
the elements, impacting a fixed stop. The system being considered is a dyna- 

mic model for a number of vibrational mechanisms. Force-d oscillations with 
a sliding regime range of a system with shock interactions are periodic motions 
accompanied by a period of an infinite succession of instantaneous collisions 
of two fixed elements of the model [2]. Within the framework of conditions 
of roughness of the parameter space [ 31, in this paper we study by the method 
of [l] periodic motions with a sliding regime range of a two-mass system with 
a stop. This problem was posed because in real systems the velocity recovery 
factor H changes from shock to shock, mainly taking small values (0, 0.2). 
At the same time, the regions of realizability of one-impact oscillations, in 
practice the most essential ones among motions with a finite number of inter- 
actions over a period, narrow down sharply as R decreases and becomes very 
small even for R < 0.6 [4]. Thus, the stability of the given operation can be 
ensured by a law of motion which is independent or weakly dependent on R 

( l ) (see footnote on the next page). By virtue of what has been said above, 


